Malliavin calculus and densities for singular stochastic partial differential equations
نویسندگان
چکیده
Abstract We study Malliavin differentiability of solutions to sub-critical singular parabolic stochastic partial differential equations (SPDEs) and we prove the existence densities for a class SPDEs. Both these results are implemented in setting regularity structures. For this construct renormalized models situations where some driving noises replaced by deterministic Cameron–Martin functions, show Lipschitz continuity with respect norm. In particular, many interesting obtain convergence stability result lifts $$L^2$$ L 2 -functions models, which is independent interest. The proof also involves two separate algebraic extensions structure carried out rather large generality.
منابع مشابه
Application of Malliavin calculus to stochastic partial differential equations
The Malliavin calculus is an infinite dimensional calculus on a Gaussian space, which is mainly applied to establish the regularity of the law of nonlinear functionals of the underlying Gaussian process. Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H . The norm of an element h ∈ H will be denoted by ‖h‖H . Consider a Gaussian family of random variables W...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Malliavin Calculus Applied to Optimal Control of Stochastic Partial Differential Equations with Jumps
In this paper we employ Malliavin calculus to derive a general stochastic maximum principle for stochastic partial differential equations with jumps under partial information. We apply this result to solve an optimal harvesting problem in the presence of partial information. Another application pertains to portfolio optimization under partial observation.
متن کاملMalliavin Calculus for Backward Stochastic Differential Equations and Application to Numerical Solutions
In this paper we study backward stochastic differential equations with general terminal value and general random generator. In particular, we do not require the terminal value be given by a forward diffusion equation. The randomness of the generator does not need to be from a forward equation, either. Motivated from applications to numerical simulations, first we obtain the Lp-Hölder continuity...
متن کاملStochastic Differential Games in Insider Markets via Malliavin Calculus
In this paper we use techniques of Malliavin calculus and forward integration to present a general stochastic maximum principle for anticipating stochastic differential equations driven by a Lévy type of noise. We apply our result to study a general stochastic differential game problem of an insider. MSC2010 : 60G51, 60H40, 60H10, 60HXX, 93E20
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability Theory and Related Fields
سال: 2023
ISSN: ['0178-8051', '1432-2064']
DOI: https://doi.org/10.1007/s00440-023-01207-7